<!DOCTYPE html>
<html lang="en">
  <head>
    <meta charset="utf-8" />

    <title>reveal.js - Math Plugin</title>

    <meta
      name="viewport"
      content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no"
    />

    <link rel="stylesheet" href="../dist/reveal.css" />
    <link rel="stylesheet" href="../dist/theme/night.css" id="theme" />
  </head>

  <body>
    <div class="reveal">
      <div class="slides">
        <section>
          <h2>reveal.js Math Plugin</h2>
          <p>Render math with KaTeX, MathJax 2 or MathJax 3</p>
        </section>

        <section>
          <h3>The Lorenz Equations</h3>

          \[\begin{aligned} \dot{x} &amp; = \sigma(y-x) \\ \dot{y} &amp; = \rho
          x - y - xz \\ \dot{z} &amp; = -\beta z + xy \end{aligned} \]
        </section>

        <section>
          <h3>The Cauchy-Schwarz Inequality</h3>

          <script type="math/tex; mode=display">
            \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
          </script>
        </section>

        <section>
          <h3>A Cross Product Formula</h3>

          \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} &amp;
          \mathbf{j} &amp; \mathbf{k} \\ \frac{\partial X}{\partial u} &amp;
          \frac{\partial Y}{\partial u} &amp; 0 \\ \frac{\partial X}{\partial v}
          &amp; \frac{\partial Y}{\partial v} &amp; 0 \end{vmatrix} \]
        </section>

        <section>
          <h3>
            The probability of getting \(k\) heads when flipping \(n\) coins is
          </h3>

          \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
        </section>

        <section>
          <h3>An Identity of Ramanujan</h3>

          \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
          1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
          {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
        </section>

        <section>
          <h3>A Rogers-Ramanujan Identity</h3>

          \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
          \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
        </section>

        <section>
          <h3>Maxwell&#8217;s Equations</h3>

          \[ \begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\,
          \frac{\partial\vec{\mathbf{E}}}{\partial t} &amp; =
          \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} &amp;
          = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\,
          \frac{\partial\vec{\mathbf{B}}}{\partial t} &amp; = \vec{\mathbf{0}}
          \\ \nabla \cdot \vec{\mathbf{B}} &amp; = 0 \end{aligned} \]
        </section>

        <section>
          <h3>TeX Macros</h3>

          Here is a common vector space: \[L^2(\R) = \set{u : \R \to \R}{\int_\R
          |u|^2 &lt; +\infty}\] used in functional analysis.
        </section>

        <section>
          <section>
            <h3>The Lorenz Equations</h3>

            <div class="fragment">
              \[\begin{aligned} \dot{x} &amp; = \sigma(y-x) \\ \dot{y} &amp; =
              \rho x - y - xz \\ \dot{z} &amp; = -\beta z + xy \end{aligned} \]
            </div>
          </section>

          <section>
            <h3>The Cauchy-Schwarz Inequality</h3>

            <div class="fragment">
              \[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n
              a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
            </div>
          </section>

          <section>
            <h3>A Cross Product Formula</h3>

            <div class="fragment">
              \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i}
              &amp; \mathbf{j} &amp; \mathbf{k} \\ \frac{\partial X}{\partial u}
              &amp; \frac{\partial Y}{\partial u} &amp; 0 \\ \frac{\partial
              X}{\partial v} &amp; \frac{\partial Y}{\partial v} &amp; 0
              \end{vmatrix} \]
            </div>
          </section>

          <section>
            <h3>
              The probability of getting \(k\) heads when flipping \(n\) coins
              is
            </h3>

            <div class="fragment">
              \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
            </div>
          </section>

          <section>
            <h3>An Identity of Ramanujan</h3>

            <div class="fragment">
              \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}}
              = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
              {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
            </div>
          </section>

          <section>
            <h3>A Rogers-Ramanujan Identity</h3>

            <div class="fragment">
              \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
              \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
            </div>
          </section>

          <section>
            <h3>Maxwell&#8217;s Equations</h3>

            <div class="fragment">
              \[ \begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\,
              \frac{\partial\vec{\mathbf{E}}}{\partial t} &amp; =
              \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}}
              &amp; = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\,
              \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} &amp; =
              \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} &amp; = 0
              \end{aligned} \]
            </div>
          </section>

          <section>
            <h3>TeX Macros</h3>

            Here is a common vector space: \[L^2(\R) = \set{u : \R \to
            \R}{\int_\R |u|^2 &lt; +\infty}\] used in functional analysis.
          </section>
        </section>
      </div>
    </div>

    <script src="../dist/reveal.js"></script>
    <script src="../plugin/math/math.js"></script>
    <script>
      Reveal.initialize({
        history: true,
        transition: "linear",

        mathjax2: {
          config: "TeX-AMS_HTML-full",
          TeX: {
            Macros: {
              R: "\\mathbb{R}",
              set: ["\\left\\{#1 \\; ; \\; #2\\right\\}", 2],
            },
          },
        },

        // There are three typesetters available
        // RevealMath.MathJax2 (default)
        // RevealMath.MathJax3
        // RevealMath.KaTeX
        //
        // More info at https://revealjs.com/math/
        plugins: [RevealMath.MathJax2],
      });
    </script>
  </body>
</html>