202 lines
6.4 KiB
HTML
202 lines
6.4 KiB
HTML
<!DOCTYPE html>
|
|
<html lang="en">
|
|
<head>
|
|
<meta charset="utf-8" />
|
|
|
|
<title>reveal.js - Math Plugin</title>
|
|
|
|
<meta
|
|
name="viewport"
|
|
content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no"
|
|
/>
|
|
|
|
<link rel="stylesheet" href="../dist/reveal.css" />
|
|
<link rel="stylesheet" href="../dist/theme/night.css" id="theme" />
|
|
</head>
|
|
|
|
<body>
|
|
<div class="reveal">
|
|
<div class="slides">
|
|
<section>
|
|
<h2>reveal.js Math Plugin</h2>
|
|
<p>Render math with KaTeX, MathJax 2 or MathJax 3</p>
|
|
</section>
|
|
|
|
<section>
|
|
<h3>The Lorenz Equations</h3>
|
|
|
|
\[\begin{aligned} \dot{x} & = \sigma(y-x) \\ \dot{y} & = \rho
|
|
x - y - xz \\ \dot{z} & = -\beta z + xy \end{aligned} \]
|
|
</section>
|
|
|
|
<section>
|
|
<h3>The Cauchy-Schwarz Inequality</h3>
|
|
|
|
<script type="math/tex; mode=display">
|
|
\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
|
|
</script>
|
|
</section>
|
|
|
|
<section>
|
|
<h3>A Cross Product Formula</h3>
|
|
|
|
\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} &
|
|
\mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} &
|
|
\frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v}
|
|
& \frac{\partial Y}{\partial v} & 0 \end{vmatrix} \]
|
|
</section>
|
|
|
|
<section>
|
|
<h3>
|
|
The probability of getting \(k\) heads when flipping \(n\) coins is
|
|
</h3>
|
|
|
|
\[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
|
|
</section>
|
|
|
|
<section>
|
|
<h3>An Identity of Ramanujan</h3>
|
|
|
|
\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
|
|
1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
|
|
{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
|
|
</section>
|
|
|
|
<section>
|
|
<h3>A Rogers-Ramanujan Identity</h3>
|
|
|
|
\[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
|
|
\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
|
|
</section>
|
|
|
|
<section>
|
|
<h3>Maxwell’s Equations</h3>
|
|
|
|
\[ \begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\,
|
|
\frac{\partial\vec{\mathbf{E}}}{\partial t} & =
|
|
\frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} &
|
|
= 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\,
|
|
\frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}}
|
|
\\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} \]
|
|
</section>
|
|
|
|
<section>
|
|
<h3>TeX Macros</h3>
|
|
|
|
Here is a common vector space: \[L^2(\R) = \set{u : \R \to \R}{\int_\R
|
|
|u|^2 < +\infty}\] used in functional analysis.
|
|
</section>
|
|
|
|
<section>
|
|
<section>
|
|
<h3>The Lorenz Equations</h3>
|
|
|
|
<div class="fragment">
|
|
\[\begin{aligned} \dot{x} & = \sigma(y-x) \\ \dot{y} & =
|
|
\rho x - y - xz \\ \dot{z} & = -\beta z + xy \end{aligned} \]
|
|
</div>
|
|
</section>
|
|
|
|
<section>
|
|
<h3>The Cauchy-Schwarz Inequality</h3>
|
|
|
|
<div class="fragment">
|
|
\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n
|
|
a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
|
|
</div>
|
|
</section>
|
|
|
|
<section>
|
|
<h3>A Cross Product Formula</h3>
|
|
|
|
<div class="fragment">
|
|
\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i}
|
|
& \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u}
|
|
& \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial
|
|
X}{\partial v} & \frac{\partial Y}{\partial v} & 0
|
|
\end{vmatrix} \]
|
|
</div>
|
|
</section>
|
|
|
|
<section>
|
|
<h3>
|
|
The probability of getting \(k\) heads when flipping \(n\) coins
|
|
is
|
|
</h3>
|
|
|
|
<div class="fragment">
|
|
\[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
|
|
</div>
|
|
</section>
|
|
|
|
<section>
|
|
<h3>An Identity of Ramanujan</h3>
|
|
|
|
<div class="fragment">
|
|
\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}}
|
|
= 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
|
|
{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
|
|
</div>
|
|
</section>
|
|
|
|
<section>
|
|
<h3>A Rogers-Ramanujan Identity</h3>
|
|
|
|
<div class="fragment">
|
|
\[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
|
|
\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
|
|
</div>
|
|
</section>
|
|
|
|
<section>
|
|
<h3>Maxwell’s Equations</h3>
|
|
|
|
<div class="fragment">
|
|
\[ \begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\,
|
|
\frac{\partial\vec{\mathbf{E}}}{\partial t} & =
|
|
\frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}}
|
|
& = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\,
|
|
\frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & =
|
|
\vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0
|
|
\end{aligned} \]
|
|
</div>
|
|
</section>
|
|
|
|
<section>
|
|
<h3>TeX Macros</h3>
|
|
|
|
Here is a common vector space: \[L^2(\R) = \set{u : \R \to
|
|
\R}{\int_\R |u|^2 < +\infty}\] used in functional analysis.
|
|
</section>
|
|
</section>
|
|
</div>
|
|
</div>
|
|
|
|
<script src="../dist/reveal.js"></script>
|
|
<script src="../plugin/math/math.js"></script>
|
|
<script>
|
|
Reveal.initialize({
|
|
history: true,
|
|
transition: "linear",
|
|
|
|
mathjax2: {
|
|
config: "TeX-AMS_HTML-full",
|
|
TeX: {
|
|
Macros: {
|
|
R: "\\mathbb{R}",
|
|
set: ["\\left\\{#1 \\; ; \\; #2\\right\\}", 2],
|
|
},
|
|
},
|
|
},
|
|
|
|
// There are three typesetters available
|
|
// RevealMath.MathJax2 (default)
|
|
// RevealMath.MathJax3
|
|
// RevealMath.KaTeX
|
|
//
|
|
// More info at https://revealjs.com/math/
|
|
plugins: [RevealMath.MathJax2],
|
|
});
|
|
</script>
|
|
</body>
|
|
</html>
|